Precision CNC Machining for Metal Parts | 40% Faster Production

Get a Free Quote

Our representative will contact you soon.
Email
Name
Mobile/WhatsApp
Company Name
Message
0/1000

Full - Closed - Loop CNC Machining for Efficient Production

Our CNC machining process features a full - closed - loop system of "programming - processing - three - coordinate inspection". With a cluster of over 40 imported high - precision turning machines and turn - milling composite machines, we can support the batch processing of parts such as new energy motor shafts. Compared with traditional processes, our CNC machining efficiency has increased by 40%, and the yield rate reaches 99.5%. This efficient and reliable machining method combines the advantages of CNC turning and CNC milling to provide high - quality machining solutions.
Get A Quote

Advantages

Full - Closed - Loop Process for Quality Assurance

CNC machining establishes a "programming - processing - three - coordinate inspection" closed loop, ensuring 99.5% yield rate. The system reduces errors through real - time monitoring, supporting high - precision parts like new energy motor shafts.

40% Efficiency Enhancement over Traditional Methods

With over 40 imported high - precision machines, CNC machining boosts production efficiency by 40% compared to traditional processes. The equipment cluster enables rapid batch processing while maintaining 99.5% yield rate.

Advanced Equipment - Driven Machining Precision

Relying on 40 + imported Tsugami and Citizen machines, CNC machining ensures micron - level precision. The equipment’s high - speed processing and stable performance enable complex part manufacturing with tight tolerances.

Related products

CNC machining for metal is a foundational aspect of precision manufacturing, encompassing the use of computer numerical control machines to shape various metals into high-precision components. Metals commonly machined include aluminum, steel, stainless steel, titanium, copper, and brass, each with unique properties that require specific machining strategies. CNC milling and turning are the primary processes for metal machining, with milling used for complex shapes, slots, and holes, and turning for cylindrical components like shafts and discs. For example, a CNC mill can machine a stainless steel medical instrument with intricate details, while a CNC lathe can turn an aluminum engine shaft to tight tolerances. The machining of metals involves considerations such as cutting tool material (e.g., carbide, HSS), cutting parameters (speed, feed, depth), and coolant application to manage heat and tool wear. Hardened metals may require specialized techniques like hard milling or grinding to achieve the desired precision. Surface finishes for metal parts can range from rough to mirror-like, achieved through processes like polishing, grinding, or plating. CNC machining for metal is essential across industries, from aerospace and automotive to medical and electronics, providing the precision and reliability needed for critical metal components.

Frequently Asked Questions

What is the CNC machining process flow of the company?

The company's CNC machining features a full - closed - loop process: programming - processing - three - coordinate inspection. This ensures high precision, with a 99.5% yield rate and 40% efficiency improvement over traditional methods.
CNC machining boosts efficiency by 40% versus traditional methods, thanks to over 40 imported high - precision machines. It supports batch processing of parts like new energy motor shafts with a 99.5% yield rate.
CNC machining relies on over 40 imported high - precision turning machines and turn - milling composites, including Japanese Tsugami and Citizen models, enabling micron - level precision.
Yes, the equipment cluster supports batch production of parts like new energy motor shafts, with a 99.5% yield rate. The automated process minimizes errors and ensures consistency.
CNC machining integrates turning, milling, and inspection technologies. This synergy allows full - dimensional processing, from simple shafts to complex aerospace components with strict precision needs.

Related Articles

CNC Turning vs Milling: Key Differences Explained

20

Jun

CNC Turning vs Milling: Key Differences Explained

View More
CNC Machining Process: Step-by-Step Guide

20

Jun

CNC Machining Process: Step-by-Step Guide

View More
Custom Parts: Tailoring Solutions for Unique Needs

20

Jun

Custom Parts: Tailoring Solutions for Unique Needs

View More
CNC Turning: Precision Shaft Manufacturing Insights

20

Jun

CNC Turning: Precision Shaft Manufacturing Insights

View More

Customer Reviews

David Wilson, New Energy Motors Corporation
Efficient CNC Machining Improves Production by 40%

The company's CNC machining process with a full - closed - loop system has greatly improved our new energy motor shaft production efficiency by 40%. The yield rate of 99.5% ensures stable product quality, and the three - coordinate inspection system provides reliable quality assurance.

Jennifer Lee, Aerospace Engineering Solutions Inc.
High - Precision CNC Machining for Aerospace Parts

Processing titanium alloy parts for our aerospace project, the company achieved a tolerance of ±0.01mm through advanced CNC machining technology. The entire process from programming to inspection was rigorous, ensuring the parts met our strict requirements.

Get a Free Quote

Our representative will contact you soon.
Email
Name
Mobile/WhatsApp
Company Name
Message
0/1000
Integrated Technology for Comprehensive Solutions

Integrated Technology for Comprehensive Solutions

CNC machining integrates turning, milling, and inspection technologies, offering full - dimensional processing. This integration allows efficient handling of complex parts, such as aerospace components with strict precision requirements.